Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The ML 5.8 earthquake that jolted Gyeongju in southeastern Korea in 2016 was the country’s largest inland event since instrumental seismic monitoring began in 1978. We developed dynamic rupture models of the Gyeongju event constrained by near-source ground-motion data using full 3D spontaneous dynamic rupture modeling with the slip-weakening friction law. Based on our results, we propose two simple dynamic rupture models with constant strength excess (SE) and slip-weakening distance (Dc) that produce near-source ground-motion waveforms compatible with recorded ones in the low-frequency band. Both dynamic models exhibit relatively large stress-drop values, consistent with previous estimates constrained by source spectrum analyses. The fracture energy estimates were also larger than those predicted by a scaling relationship with the seismic moment. The dynamic features constrained in this study by spontaneous rupture modeling and waveform comparison may help understand the source and ground-motion characteristics of future large events in southeastern Korea and thus the seismic hazard of the region.more » « less
-
Abstract Shallow slow-slip events (SSEs) contribute to strain release near the shallow portions of subduction interfaces and may contribute to promoting shallow subduction earthquakes. Recent efforts in offshore monitoring of shallow SSEs have provided evidence of possible interactions between shallow SSEs and megathrust earthquakes. In this study, we use a dynamic earthquake simulator that captures both quasi-static (for SSEs) and dynamic (for megathrust earthquakes) slip to explore their interactions and implications for seismic and tsunami hazards. We model slip behaviors of a shallow-dipping subduction interface on which two locally locked patches (asperities) with different strengths are embedded within a conditionally stable zone. We find that both SSEs and earthquakes can occur, and they interact over multiple earthquake cycles in the model. Dynamic ruptures can nucleate on the asperities and propagate into the surrounding conditionally stable zone at slow speeds, generating tsunami earthquakes. A clear correlation emerges between the size of an earthquake and SSE activities preceding it. Small earthquakes rupture only the low-strength asperity, whereas large earthquakes rupture both. Before a large earthquake, periodic SSEs occur around the high-strength asperity, gradually loading stress into its interior. The critically stressed high-strength asperity can be ruptured together with the low-strength one in the large earthquake, followed by a relatively quiet interseismic period with very few SSEs and then a small earthquake. An SSE may or may not directly lead to nucleation of an earthquake, depending on whether a nearby asperity is ready for spontaneously dynamic failure. In addition, because of different SSE activities, the coupling degree may change dramatically between different interseismic periods, suggesting that its estimate based on a short period of observation may be biased.more » « less
-
SUMMARY Observations of historical tsunami earthquakes reveal that ruptures of these earthquakes propagate slowly at shallow depth with longer duration, depletion in high-frequency radiation and larger discrepancy of Mw–Ms than ordinary megathrust earthquakes. They can effectively generate tsunami and lead to huge damage to regional populated areas near the coast. In this study, we use a recently developed dynamic earthquake simulator to explore tsunami earthquake generation from a physics-based modelling point of view. We build a shallow-dipping subduction zone model in which locally locked, unstable patches (asperities) are distributed on a conditionally stable subduction interface at shallow depth. The dynamic earthquake simulator captures both quasi-static and dynamic processes of earthquake cycles. We find that earthquakes can nucleate on these asperities and propagate into the surrounding conditionally stable zone at slow speeds, generating tsunami earthquakes. A high normal stress asperity, representing a subducted seamount, can act as an asperity in some events but as a barrier in other events over multiple earthquake cycles. Low normal stress asperities typically act as asperities in tsunami earthquakes. The degree of velocity-weakening in the conditionally stable zone, which may sustain rupture at different speeds or stop rupture, is critical for tsunami earthquake generation and affects its recurrence interval. Distributed asperities may rupture in isolated events separated by tens of years, or in a sequence of events separated by hours to days, or in one large event in a cascade fashion, demonstrating complex interactions among them. The recurrence interval on a high normal stress asperity is much larger than that on low normal stress asperities. These modelling results shed lights on the observations from historical tsunami earthquakes, including the 1994 and 2006 Java tsunami earthquakes and 2010 Mentawai tsunami earthquake.more » « less
-
null (Ed.)ABSTRACT Large earthquakes on strike-slip faults often rupture multiple fault segments by jumping over stepovers. Previous studies, based on field observations or numerical modeling with a homogeneous initial stress field, have suggested that stepovers more than ∼5 km wide would stop the propagation of rupture, but many exceptions have been observed in recent years. Here, we integrate a dynamic rupture model with a long-term fault stress model to explore the effects of background stress perturbation on rupture propagation across stepovers along strike-slip faults. Our long-term fault models simulate steady-state stress perturbation around stepovers. Considering such stress perturbation in dynamic rupture models leads to prediction of larger distance a dynamic rupture can jump over stepovers: over 15 km for a releasing stepover or 7 km for a restraining stepover, comparing with the 5 km limit in models with the same fault geometry and frictional property but assuming a homogeneous initial stress. The effect of steady-state stress perturbations is stronger in an overlapping stepover than in an underlapping stepover. The maximum jumping distance can reach 20 km in an overlapping releasing stepover with low-static frictional coefficients. These results are useful for estimating the maximum length of potential fault ruptures and assessing seismic hazard.more » « less
-
Abstract Understanding mechanical conditions that lead to complexity in earthquakes is important to seismic hazard analysis. In this study, we simulate physics‐based multicycle dynamic models of the San Andreas fault (Carrizo through San Bernardino sections) and the San Jacinto fault (Claremont and Clark strands). We focus on a complex fault geometry based on the Southern California Earthquake Center Community Fault Model and its effect over multiple earthquake cycles. Using geodetically derived strain rates, we validate the models against geologic slip rates and recurrence intervals at various paleoseismic sites. We find that the interactions among fault geometry, dynamic rupture and interseismic stress accumulation produce stress heterogeneities, leading to rupture segmentation and variability in earthquake recurrence. Our models produce earthquakes with rupture extents similar to a recent comprehensive paleoseismic catalog. The “earthquake gates” of the Big Bend and the Cajon Pass occasionally impede dynamic ruptures. The angle of compression, which is the subtraction of the maximum shear strain rate direction from the local fault strike, can better determine the likelihood of the impedance of restraining bends to dynamic ruptures. Because the Big Bend has an angle of compression of ∼20°, ruptures that traverse the Big Bend, like the 1857 Fort Tejon earthquake, are more frequent than expected based on empirical relations which predict the ∼40° restraining bend to terminate most ruptures. Our models indicate that large ruptures tend to initiate north of the Big Bend and propagate southwards, similar to the 1857 earthquake, providing critical information for ground shaking assessment in the region.more » « less
-
Abstract Dynamic modeling of sequences of earthquakes and aseismic slip (SEAS) provides a self‐consistent, physics‐based framework to connect, interpret, and predict diverse geophysical observations across spatial and temporal scales. Amid growing applications of SEAS models, numerical code verification is essential to ensure reliable simulation results but is often infeasible due to the lack of analytical solutions. Here, we develop two benchmarks for three‐dimensional (3D) SEAS problems to compare and verify numerical codes based on boundary‐element, finite‐element, and finite‐difference methods, in a community initiative. Our benchmarks consider a planar vertical strike‐slip fault obeying a rate‐ and state‐dependent friction law, in a 3D homogeneous, linear elastic whole‐space or half‐space, where spontaneous earthquakes and slow slip arise due to tectonic‐like loading. We use a suite of quasi‐dynamic simulations from 10 modeling groups to assess the agreement during all phases of multiple seismic cycles. We find excellent quantitative agreement among simulated outputs for sufficiently large model domains and small grid spacings. However, discrepancies in rupture fronts of the initial event are influenced by the free surface and various computational factors. The recurrence intervals and nucleation phase of later earthquakes are particularly sensitive to numerical resolution and domain‐size‐dependent loading. Despite such variability, key properties of individual earthquakes, including rupture style, duration, total slip, peak slip rate, and stress drop, are comparable among even marginally resolved simulations. Our benchmark efforts offer a community‐based example to improve numerical simulations and reveal sensitivities of model observables, which are important for advancing SEAS models to better understand earthquake system dynamics.more » « less
An official website of the United States government
